
Robert Oeckl � FA NOTES 4 � 19/05/2010 1

4 Algebras, Operators and Dual Spaces

4.1 The Stone-Weierstraÿ Theorem

De�nition 4.1. A vector space X over the �eld K is called an algebra over

K i� it is equipped with an associative bilinear map · : X ×X → X. This

map is called multiplication.

De�nition 4.2. LetX be an algebra over K equipped with a topology. Then

X is called a topological algebra i� vector addition, scalar multiplication and

algebra multiplication are continuous.

Proposition 4.3. Let S be a topological space. Then, C(S,K) with the

topology of compact convergence is a topological algebra.

Proof. Exercise.

Lemma 4.4. Let c > 0. The absolute value function | · | : R → R given

by x 7→ |x| can be approximated uniformly on [−c, c] by polynomials with

vanishing constant term.

Proof. Exercise.

Lemma 4.5. Let c > 0 and ε > 0. Then, there exist polynomials Pmin and

Pmax of n variables and without constant term such that for all a1, . . . , an ∈
[−c, c],

|Pmin(a1, . . . , an)−min{a1, . . . , an}| < ε,

|Pmax(a1, . . . , an)−max{a1, . . . , an}| < ε.

Furthermore, Pmin(a, . . . , a) = a and Pmax(a, . . . , a) = a.

Proof. It su�ces to show the statement for n = 2. Since the minimum

and maximum functions can be evaluated iteratively, the general statement

follows then by iteration and a multi-ε argument. We notice that

max{a1, a2} =
a1 + a2

2
+

|a1 − a2|
2

min{a1, a2} =
a1 + a2

2
− |a1 − a2|

2
.

By Lemma 4.4 there exists a polynomial P without constant terms such that

|P (x)− |x|| < 2ε for all x ∈ [−2c, 2c]. It is easily veri�ed that

Pmax(a1, a2) :=
a1 + a2

2
+

P (a1 − a2)

2
,

Pmin(a1, a2) :=
a1 + a2

2
− P (a1 − a2)

2
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have the desired properties.

De�nition 4.6. Let S be a set and A ⊆ F (S,K). We say that A separates

points i� for each pair x, y ∈ S such that x 6= y there exists f ∈ A such that

f(x) 6= f(y). We say that A vanishes nowhere i� for each x ∈ S there exists

f ∈ A such that f(x) 6= 0.

Lemma 4.7. Let S be a topological space and A ⊆ C(S,K) a subalgebra.

Suppose that A separates points and vanishes nowhere. Then, for any pair

x, y ∈ S with x 6= y and any pair a, b ∈ K there exists a function f ∈ A such

that f(x) = a and f(y) = b.

Proof. Exercise.

Theorem 4.8 (real Stone-Weierstraÿ). Let K be a compact Hausdor� space

and A ⊆ C(K,R) a subalgebra. Suppose that A separates points and vanishes

nowhere. Then, A is dense in C(K,R) with respect to the topology of uniform

convergence.

Proof. Given f ∈ C(K,R), and ε > 0 we have to show that there is k ∈ A
such that k ∈ Bε(f), i.e.,

f(x)− ε < k(x) < f(x) + ε ∀x ∈ K.

Fix x ∈ K. For each y ∈ K we choose a function gx,y ∈ A such that

f(x) = gx,y(x) and f(y) = gx,y(y). This is possible by Lemma 4.7. By

continuity there exists an open neighborhood Uy for each y ∈ K such that

gx,y(z) < f(z) + ε/4 for all z ∈ Uy. Since K is compact there are �nitely

many points y1, . . . , yn ∈ K such that the associated open neighborhoods

Uy1 , . . . , Uyn cover K. Let

gx := min{gx,y1 , . . . , gx,yn}.

Since K is compact there exists c > 0 such that |gx,yi(z)| ≤ c for all z ∈ K
and all i ∈ {1, . . . , n}. Then, by Lemma 4.5 there exists a polynomial Pmin

such that hx := Pmin(gx,y1 , . . . , gx,yn) ∈ A satis�es |hx(z) − gx(z)| < ε/4 for

all z ∈ K and hx(x) = gx(x). Thus, hx(x) = f(x) and hx(z) < f(z) + ε/2
for all z ∈ K.

Choose now for each x ∈ K a function hx ∈ A as above. Then, by

continuity, for each x ∈ K there exists an open neighborhood Ux such that

f(z) − ε/2 < hx(z) for all z ∈ Ux. By compactness of K there exists a
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�nite set of points x1, . . . , xm ∈ K such that the associated neighborhoods

Ux1 , . . . , Uxm cover K. Let

h := max{hx1 , . . . , hxm}.

Since K is compact there exists c > 0 such that |hxi(z)| ≤ c for all z ∈ K
and all i ∈ {1, . . . ,m}. By Lemma 4.5 there exists a polynomial Pmax such

that k := Pmax(hx1 , . . . , hxm) ∈ A satis�es |k(z)− h(z)| < ε/2 for all z ∈ K.

Then, f(z)−ε < k(z) < f(z)+ε for all z ∈ K. This completes the proof.

Theorem 4.9 (complex Stone-Weierstraÿ). Let K be a compact Hausdor�

space and A ⊆ C(K,C) a subalgebra. Suppose that A separates points, van-

ishes nowhere and is invariant under complex conjugation. Then, A is dense

in C(K,C) with respect to the topology of uniform convergence.

Proof. Let AR be the real subalgebra of A given by the functions with values

in R. Note that if f ∈ A, then <f ∈ AR since <f = (f + f)/2. Likewise

if f ∈ A, then =f ∈ AR since =f = −<(if). It is then clear that AR
separates points and vanishes nowhere. Applying the real version of the

Stone-Weierstraÿ Theorem 4.8 we �nd that AR is dense in C(K,R). But

then A = AR + iAR is dense in C(K,C) = C(K,R) + i C(K,R).

Theorem 4.10. Let S be a Hausdor� space and A ⊆ C(S,K) a subalgebra.

Suppose that A separates points, vanishes nowhere and is invariant under

complex conjugation if K = C. Then, A is dense in C(S,K) with respect to

the topology of compact convergence.

Proof. Recall that the sets of the form

UK,ε := {f ∈ C(S,K) : |f(x)| < ε ∀x ∈ K},

where K ⊆ S is compact and ε > 0 form a basis of neighborhoods of 0 in

C(S,K). Given f ∈ C(S,K), K ⊆ S compact and ε > 0 we have to show that

there is g ∈ A such that g ∈ f + UK,ε. Let AK be the image of A under the

projection p : C(S,K) → C(K,K). Then, AK is an algebra that separates

points, vanishes nowhere and is invariant under complex conjugation if K =
C. By the ordinary Stone-Weierstraÿ Theorem 4.8 or 4.9, AK is dense in

C(K,K) with respect to the topology of uniform convergence. Hence, there

exists g ∈ A such that p(g) ∈ Bε(p(f)). But this is equivalent to g ∈
f + UK,ε.
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Theorem 4.11. Let S be a locally compact Hausdor� space and A ⊆ C0(S,K)
a subalgebra. Suppose that A separates points, vanishes nowhere and is in-

variant under complex conjugation if K = C. Then, A is dense in C0(S,K)
with respect to the topology of uniform convergence.

Proof. Exercise.Hint: Let S̃ = S ∪ {∞} be the one-point compacti�cation

of S. Show that C0(S,K) can be identi�ed with the closed subalgebra

C|∞=0(S̃,K) ⊆ C(S̃,K) of those continuous functions on S̃ that vanish at

∞. Denote by Ã the corresponding extension of A to S̃. Now modify Theo-

rem 4.8 in such a way that Ã is assumed to vanish nowhere except at ∞ to

show that Ã is dense in C|∞=0(S̃,K).

4.2 Operators

De�nition 4.12. Let X, Y be tvs. We denote the vector space of compact

linear maps X → Y by KL(X,Y ).

Proposition 4.13. Let X, Y , Z be tvs. Let f ∈ CL(X,Y ) and g ∈
CL(Y, Z). If f or g is bounded, then g ◦ f is bounded. If f or g is com-

pact, then g ◦ f is compact.

Proof. Exercise.

De�nition 4.14. Let X,Y be normed vector spaces. Then, the operator

norm on CL(X,Y ) is given by

‖f‖ := sup
{
‖f(x)‖ : x ∈ B1(0) ⊆ X

}
.

Proposition 4.15. Let X be a normed vector space and Y a Banach space.

Then, CL(X,Y ) with the operator norm is a Banach space.

Proof. Let {fn}n∈N be a Cauchy sequence in CL(X,Y ). This means,

∀ε > 0 : ∃N > 0 : ∀n,m ≥ N : ‖fn − fm‖ ≤ ε.

But by the de�nition of the operator norm this is equivalent to

∀ε > 0 : ∃N > 0 : ∀n,m ≥ N : ∀x ∈ X : ‖fn(x)− fm(x)‖ ≤ ε‖x‖. (1)

Since Y is complete, so each of the Cauchy sequences {fn(x)}n∈N converges

to a vector f(x) ∈ Y . This de�nes a map f : X → Y . f is linear since we

have for all x, y ∈ X and λ, µ ∈ K,

f(λx+ µy) = lim
n→∞

fn(λx+ µy) = lim
n→∞

(λfn(x) + µfn(y))

= λ lim
n→∞

fn(x) + µ lim
n→∞

fn(y) = λf(x) + µf(y).
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Equation (1) implies now

∀ε > 0 : ∃N > 0 : ∀n ≥ N : ∀x ∈ X : ‖fn(x)− f(x)‖ ≤ ε‖x‖.

This implies that f is continuous and is equivalent to

∀ε > 0 : ∃N > 0 : ∀n ≥ N : ‖fn − f‖ ≤ ε.

That is, {fn}n∈N converges to f .

Exercise 23. Let X, Y be tvs. Let S be the set of bounded subsets of X.

(a) Show that CL(X,Y ) is a tvs with the S-topology. (b) Suppose further

that X is locally bounded and Y is complete. Show that then CL(X,Y ) is
complete. (c) Show that ifX and Y are normed vector spaces theS-topology

coincides with the operator norm topology.

Example 4.16. Let X be a tvs. Then, CL(X,X) is an algebra over K
and Proposition 4.13 implies that the subsets BL(X,X) and KL(X,X) of
CL(X,X) are bi-ideals.

Exercise 24. Let X be a normed vector space. Show that CL(X,X) with
the operator norm and multiplication given by composition is a topological

algebra. Moreover, show that ‖A ◦B‖ ≤ ‖A‖‖B‖ for all A,B ∈ CL(X,X).

4.3 Dual spaces

De�nition 4.17. Let X be a tvs over K. Then, the space L(X,K) of linear
maps X → K is called the algebraic dual of X and denoted by X×. The

space CL(X,K) of continuous linear maps X → K is called the (topological)

dual of X and denoted by X∗.

De�nition 4.18. Let X be a tvs. Then, the weak∗ topology on X∗ is the

coarsest topology on X∗ such that the evaluation maps x̂ : X∗ → K given

by x̂(f) := f(x) are continuous for all x ∈ X.

Exercise 25. Let X be a tvs. Show that the weak∗ topology on X∗ makes it

into a locally convex tvs and indeed coincides with the topology of pointwise

convergence under the inclusion CL(X,K) ⊆ C(X,K). Moreover, show that

CL(X,K) is closed in C(X,K).

Proposition 4.19. Let X be a tvs, F ⊆ CL(X,K) equicontinuous. Then,

F is bounded in the weak∗ topology.

Proof. Exercise.
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Proposition 4.20. Let X be a normed vector space. Then, the operator

norm topology on X∗ is �ner than the weak∗ topology.

Proof. Exercise.

Indeed, we shall see that the following Banach-Alaoglu Theorem has as

a striking consequence a considerable strengthening of the above statement.

Theorem 4.21 (Banach-Alaoglu). Let X be a tvs, U a neighborhood of 0
in X and V a bounded and closed set in K. Then, the set

M(U, V ) := {f ∈ X∗ : f(U) ⊆ V }.

is compact with respect to the weak∗ topology.

Proof. We �rst show that M(U, V ) is closed. To this end observe that

M(U, V ) =
⋂
x∈U

M({x}, V ) where M({x}, V ) := {f ∈ X∗ : f(x) ∈ V }.

Each set M({x}, V ) is closed since it is the preimage of the closed set V
under the continuous evaluation map x̂ : X∗ → K. Thus, M(U, V ), being
an intersection of closed sets is closed.

Next we show that M(U, V ) is equicontinuous and bounded. Let W be

a neighborhood of 0 in K. Since V is bounded there exists λ > 0 such that

V ⊆ λW , i.e., λ−1V ⊆ W . But by linearity M(U, V ) = M(λ−1U, λ−1V ).
This means that f(λ−1U) ⊆ λ−1V ⊆ W for all f ∈ M(U, V ), showing
equicontinuity. By Proposition 4.19 it is also bounded.

Thus, the assumptions of the Arzela-Ascoli Theorem 3.35 are satis�ed

and we obtain that M(U, V ) is relatively compact with respect to the topol-

ogy of compact convergence. But since M(U, V ) is closed in the topology

of pointwise convergence it is also closed in the topology of compact conver-

gence which is �ner. Hence, M(U, V ) is compact in the topology of compact

convergence. But since the topology of pointwise convergence is coarser,

M(U, V ) must also be compact in this topology.

Corollary 4.22. Let X be a normed vector space and B ⊆ X∗ the closed

unit ball with respect to the operator norm. Then B is compact in the weak∗

topology.

Proof. Exercise.

Remark 4.23. Let X be a normed space. Then, X∗ with the operator norm
topology is complete, i.e., a Banach space (due to Proposition 4.15).
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Given a normed vector space X, we shall in the following always equip

X∗ with the operator norm if not mentioned otherwise.

De�nition 4.24. Let X be a normed vector space. The bidual space of X,

denoted by X∗∗ is the dual space of the dual space X∗. Let x ∈ X.

Proposition 4.25. Let X be a normed vector space. Given x ∈ X the

evaluation map x̂ : X∗ → K given by x̂(y) := y(x) for all y ∈ X∗ is an

element of X∗∗. Moreover, the canonical linear map iX : X → X∗∗ given by

x 7→ x̂ is isometric.

Proof. The continuity of x̂ follows from Proposition 4.20. Thus, it is an

element of X∗∗. We proceed to show that iX is isometric. Denote by BX∗

the closed unit ball in X∗. Then, for all x ∈ X,

‖x̂‖ = sup
f∈BX∗

|x̂(f)| = sup
f∈BX∗

|f(x)| ≤ sup
f∈BX∗

‖f‖‖x‖ = ‖x‖.

On the other hand, given x ∈ X choose with the help of the Hahn-Banach

Theorem (Corollary 3.38) g ∈ X∗ such that g(x) = ‖x‖ and ‖g‖ = 1. Then,

‖x̂‖ = sup
f∈BX∗

|x̂(f)| ≥ |x̂(g)| = |g(x)| = ‖x‖.

De�nition 4.26. A Banach space X is called re�exive i� the canonical

linear map iX : X → X∗∗ is surjective.

4.4 Adjoint operators

De�nition 4.27. Let X, Y be tvs and f ∈ CL(X,Y ). The adjoint operator
f∗ ∈ L(Y ∗, X∗) is de�ned by

(f∗(g))(x) := g(f(x)) ∀x ∈ X, g ∈ Y ∗.

Remark 4.28. It is immediately veri�ed that the image of f∗ is indeed

contained in X∗ and not merely in X×.

Proposition 4.29. Let X, Y be tvs and f ∈ CL(X,Y ). Then, f∗ ∈
CL(Y ∗, X∗) if we equip X∗ and Y ∗ with the weak∗ topology.

Proof. Exercise.
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Proposition 4.30. Let X, Y be normed vector spaces and f ∈ CL(X,Y ).
Then, f∗ ∈ CL(Y ∗, X∗) if we equip X∗ and Y ∗ with the operator norm topol-

ogy. Moreover, equipping also CL(X,Y ) and CL(Y ∗, X∗) with the operator

norm we get ‖f∗‖ = ‖f‖ for all f ∈ CL(X,Y ). That is, ∗ : CL(X,Y ) →
CL(Y ∗, X∗) is a linear isometry.

Proof. Exercise.Hint: Use the Hahn-Banach Theorem in the form of Corol-

lary 3.38 to show that ‖f∗‖ ≥ ‖f‖.

Lemma 4.31. Let X, Y be normed vector spaces and f ∈ CL(X,Y ). Then,
f∗∗ ◦ iX = iY ◦ f .

Proof. Exercise.

Proposition 4.32. Let X, Y be normed vector spaces and f ∈ CL(X,Y ).
Equip X∗ and Y ∗ with the operator norm topology. Then, f∗ is compact i�

f is compact.

Proof. Suppose �rst that f is compact. Then, C := f(B1(0)) is compact.

Let BY ∗ be the open unit ball in Y ∗. Then, BY ∗ is equicontinuous and

the restriction of BY ∗ to C ⊆ Y is bounded in C(C,K) (with the topology

of pointwise convergence). Thus, by the Arzela-Ascoli Theorem 3.35, BY ∗

restricted to C is totally bounded in C(C,K) (with the topology of uniform

convergence). In particular, for any ε > 0 there exists a �nite set F ⊆ BY ∗

such that for any g ∈ BY ∗ there is g̃ ∈ F with |g(y)− g̃(y)| < ε for all y ∈ C.
But then also |f∗(g)(x)− f∗(g̃)(x)| < ε for all x ∈ B1(0) ⊆ X. This in turn

implies ‖f∗(g)− f∗(g̃)‖ ≤ ε. That is, f∗(BY ∗) is totally bounded and hence

relatively compact. Hence, f∗ is compact.

Conversely, suppose that f∗ is compact. Then, by the same argument as

above f∗∗ : X∗∗ → Y ∗∗ is compact. That is, there is a neighborhood U∗∗ of
0 in X∗∗ such that f∗∗(U) is compact in Y ∗∗. Since iX is continuous U :=
i−1
x (U∗∗) is a neighborhood of 0 in X. Using Lemma 4.31 we get f∗∗(U∗∗) =
f∗∗ ◦ iX(U) = iY ◦ f(U). But since iY is isometric, the compactness of

iY ◦ f(U) implies the compactness of f(U). Hence, f is compact.

Proposition 4.33. Let X, Y be Hausdor� tvs, A ∈ CL(X,Y ). Then, there
are canonical isomorphisms of vector spaces,

1.
(
Y/A(X)

)∗
→ ker(A∗),

2. Y ∗/ ker(A∗) →
(
A(X)

)∗
.
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Moreover, if we equip dual space with the weak∗ topology, these isomorphisms

become isomorphisms of tvs. Similarly, If X and Y are normed vector spaces

and we equip dual spaces with the operator norm, the isomorphisms become

isometries.

Proof. Let q : Y → Y/A(X) be the quotient map. The adjoint of q is

q∗ :
(
Y/A(X)

)∗
→ Y ∗. Since q is surjective, q∗ is injective. We claim

that the image of q∗ is ker(A∗) ⊆ Y ∗ proving 1. Let f ∈
(
Y/A(X)

)∗
.

Then, A∗(q∗(f)) = f ◦ q ◦ A = 0 since already q ◦ A = 0. Now suppose

f ∈ ker(A∗) ⊆ Y ∗. Then, f ◦ A = 0, i.e., f |A(X) = 0. Since f is continuous,

we must actually have f |
A(X)

= 0. But this means there is a well de�ned

g : Y/A(X) → K such that f = q ◦ g. Moreover, the continuity of f implies

continuity of g by the de�nition of the quotient topology on Y/A(X). This
completes the proof of 1.

Consider the inclusion i : A(X) → Y . The adjoint of i is i∗ : Y ∗ →(
A(X)

)∗
. Since i is injective, i∗ is surjective. We claim that the kernel of i∗

is precisely ker(A∗) so that quotienting it leads the isomorphism 2. Indeed,

let f ∈ Y ∗. f ∈ ker(A∗) i� 0 = A∗(f) = f ◦ A. But this is equivalent to

f |A(X) = 0. Since f is continuous this is in turn equivalent to f |
A(X)

= 0.

But this is in turn equivalent to 0 = f ◦ i = i∗(f), completing the proof of 2.

Exercise.Complete the topological part of the proof.

4.5 Approximating Compact Operators

De�nition 4.34. Let X,Y be tvs. We denote the space of continuous linear

maps X → Y with �nite dimensional image by CL�n(X,Y ).

Proposition 4.35. Let X,Y be tvs such that Y is Hausdor�. Then, CL�n(X,Y ) ⊆
KL(X,Y ).

Proof. Exercise.

Proposition 4.36. Let X,Y be normed vector spaces. Then, CL�n(X,Y ) ⊆
KL(X,Y ) with respect to the operator norm topology.

Proof. Let f ∈ CL�n(X,Y ) and ε > 0. Then, there exists g ∈ CL�n(X,Y )
such that ‖f − g‖ < ε. In particular, (f − g)(B1(0)) ⊆ Bε(0). This implies

f(B1(0)) ⊆ g(B1(0))+Bε(0). But g(B1(0)) is a bounded subset of the �nite

dimensional subspace g(X) and hence totally bounded. Thus, there exists

a �nite subset F ⊆ g(B1(0)) such that g(B1(0)) ⊆ F + Bε(0). But then,



10 Robert Oeckl � FA NOTES 4 � 19/05/2010

f(B1(0)) ⊆ F +Bε(0)+Bε(0) ⊆ F +B2ε(0). That is, f(B1(0)) is covered by

a �nite number of balls of radius 2ε. Since ε was arbitrary this means that

f(B1(0)) is totally bounded and hence relatively compact.

Proposition 4.37. Let X,Y be normed vector spaces. Suppose there ex-

ists a bounded sequence {sn}n∈N of operators sn ∈ CL�n(Y, Y ) such that

limn→∞ sn(y) = y for all y ∈ Y . Then, KL(X,Y ) ⊆ CL�n(X,Y ) with

respect to the operator norm topology.

Proof. Exercise.Hint: For f ∈ KL(X,Y ) and ε > 0 show that there exists

n ∈ N such that ‖sn ◦ f − f‖ < ε.

4.6 Fredholm Operators

Proposition 4.38. Let X be a Hausdor� tvs and T ∈ KL(X,X). Then, the
kernel of S := 1− T ∈ CL(X,X) is �nite-dimensional.

Proof. Note that T acts as the identity on the subspace kerS. Denote this
induced operator by T̃ : kerS → kerS. Since T is compact so is T̃ . Thus,

there exists a neighborhood of 0 in kerS that is compact. In particular, kerS
is locally compact. By Theorem 3.18, kerS is �nite dimensional.

Proposition 4.39. Let X, Y be Banach spaces and f ∈ CL(X,Y ) injective.
Then, f(X) is closed i� there exists c > 0 such that ‖f(x)‖ ≥ c‖x‖ for all

x ∈ X.

Proof. Suppose �rst that f(X) is closed. Then, f(X) is complete since Y
is complete. Thus, by Corollary 3.66, f is open as a map X → f(X). In

particular, f(B1(0)) is an open neighborhood of 0 in f(X). Thus, there

exists c > 0 such that Bc(0) ⊆ f(B1(0)) ⊆ f(X). By injectivity of f this

implies that ‖f(x)‖ ≥ c for all x ∈ X with ‖x‖ ≥ 1. This implies in turn

‖f(x)‖ ≥ c‖x‖ for all x ∈ X.

Conversely, assume that there is c > 0 such that ‖f(x)‖ ≥ c‖x‖ for

all x ∈ X. Let y ∈ f(X). Then there exists a sequence {xn}n∈N in X
such that {f(xn)}n∈N converges to y. In particular, {f(xn)}n∈N is a Cauchy

sequence. But as is easy to see the assumption then implies that {xn}n∈N
is also a Cauchy sequence. Since X is complete this sequence converges, say

to x ∈ X. But since f is continuous we must have

y = lim
n→∞

f(xn) = f
(
lim
n→∞

xn

)
= f(x).

In particular, y ∈ f(X), i.e., f(X) is closed.



Robert Oeckl � FA NOTES 4 � 19/05/2010 11

Proposition 4.40. Let X be a Banach space and T ∈ KL(X,X). Then,

the image of S := 1 − T ∈ CL(X,X) is closed and has �nite codimension,

i.e., X/S(X) is �nite dimensional.

Proof. We �rst show that S(X) is a closed subspace of X. Since S is contin-

uous kerS is a closed subspace of X. The quotient map q : X → X/ ker(S) is
thus a continuous and open linear map between Banach spaces. S factorizes

through q via S = S̃ ◦ q, where S̃ : X/ ker(S) → X is linear, continuous and

injective. We equip X/ ker(S) with the quotient norm. By Theorem 3.64

this space is a Banach space. By Proposition 4.39 the image of S̃ (and thus

that of S) is closed i� there exists a constant c > 0 such that ‖S̃(y)‖ ≥ c‖y‖
for all y ∈ S/ ker(S). Hence, we have to demonstrate the existence of such

a constant. Suppose it does not exist. Then, there is a sequence {yn}n∈N
of elements of X/ ker(S) with ‖yn‖ = 1 and such that limn→∞ S̃(yn) = 0.
Now choose a preimages xn of the yn in X with 1 ≤ ‖xn‖ < 2. Then,

{xn}n∈N is bounded so that {T (xn)}n∈N is compact. In particular, there

is a subsequence {xk}k∈N so that {T (xk)}k∈N converges, say to z ∈ X.

Since on the other hand limk→∞ S(xk) = 0 we �nd with S + T = 1 that

limk→∞ xk = z. So by continuity of S we get S(z) = 0, i.e., z ∈ ker(S)
and hence z ∈ ker q. By continuity of q this implies, limk→∞ ‖q(xk)‖ = 0,
contradicting ‖q(xk)‖ = ‖yk‖ = 1 for all k ∈ N. This completes the proof of

the existence of c and hence of the closedness of the image of S.
The compactness of T implies the compactness of T ∗ by Proposition 4.32.

Thus, by Proposition 4.38, S∗ = 1∗ − T ∗ has �nite dimensional kernel. But

Proposition 4.33.1 implies then that the codimension of S(X) in X, i.e.,

the dimension of X/S(X) is also �nite. Since we have seen above that

S(X) = S(X), this completes the proof.

De�nition 4.41. Let X, Y be normed vector spaces and A ∈ CL(X,Y ). A
is called a Fredholm operator i� the kernel of A is �nite dimensional and its

image is closed and of �nite codimension. Then, we de�ne the index of a A
to be

indA = dim(kerA)− dim(Y/A(Y )).

We denote by FL(X,Y ) the set of Fredholm operators.

Proposition 4.42. Let X be a Hausdor� tvs. Then, any �nite dimensional

subspace of X is closed.

Proof. Let A ⊆ X be a subspace of dimension n. Then, A as a tvs is

isomorphic to Kn. In particular, A is complete and thus closed in X by

Proposition 3.15.
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Proposition 4.43. Let X be a Hausdor� tvs, C a closed subspace of X and

F a �nite-dimensional subspace of X. Then, F + C is closed in X.

Proof. Since C is closed X/C is a Hausdor� tvs. Let p : X → X/C be the

continuous projection. Then, p(F ) is �nite-dimensional, hence complete and

closed in X/C. Thus, F + C = p−1(p(F )) is closed.

Proposition 4.44. Let X be a locally convex Hausdor� tvs. Then, any �nite

dimensional subspace of X admits a closed complement.

Proof. We proceed by induction in dimension. Let A ⊆ X be a subspace of

dimension 1 and v ∈ A \ {0}. De�ne the linear map λ : A → K by λ(v) = 1.
Then, the Hahn-Banach Theorem in the form of Theorem 3.39 ensures that

λ extends to a continuous map λ̃ : X → K. Then, clearly ker λ̃ is a closed

complement of A in X. Now suppose we have shown that for any subspace

of dimension n a closed complement exists in X. Let N be a subspace of

X of dimension n + 1. Choose an n-dimensional subspace M ⊂ N . This

has a closed complement C by assumption. Moreover, C is a locally convex

Hausdor� tvs in its own right. Let A = N ∩C. Then, A is a one-dimensional

subspace of C and we can apply the initial part of the proof to conclude that

it has a closed complement D in C. But D is closed also in X since C is

closed in X and it is a complement of N .

Lemma 4.45 (Riesz). Let X be a normed vector space and C a closed

subspace. Then, for any 1 > ε > 0 there exists x ∈ X \C with ‖x‖ = 1 such

that for all y ∈ C,

‖x− y‖ ≥ 1− ε.

Proof. Choose x0 ∈ X \ C arbitrary. Now choose y0 ∈ C such that

‖x0 − y0‖ ≤ ‖x0 − y‖ 1

1− ε

for all y ∈ C. We claim that

x :=
x0 − y0
‖x0 − y0‖

has the desired property. Indeed, for all y ∈ C,

‖x− y‖ =
‖x0 − y0 − (‖x0 − y0‖)y‖

‖x0 − y0‖
≥ ‖x0 − y0‖(1− ε)

‖x0 − y0‖
.
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Proposition 4.46. Let X, Y be Banach spaces. Then, FL(X,Y ) is open in

CL(X,Y ). Moreover, ind : FL(X,Y ) → Z is continuous.

Proof. Let S : X → Y be Fredholm. Since kerS is �nite dimensional, there

exists a closed complement C ⊆ X by Proposition 4.44. Then, S|C : C → Y
is injective and has closed image S(C) = S(X). Thus, by Proposition 4.39

there exists c > 0 such that ‖S(x)‖ ≥ c‖x‖ for all x ∈ C. Now consider T ∈
Bc/2(S) ⊆ CL(X,Y ). We claim that T is Fredholm and that indT = indS,
thus proving the assertions. Indeed, for all x ∈ C we have

‖T (x)‖ ≥ ‖S(x)‖ − ‖S(x)− T (x)‖ ≥ c‖x‖ − ‖S − T‖‖x‖ ≥ c/2‖x‖.

Thus, kerT ∩ C = {0} and so the dimension of kerT must be smaller or

equal to the codimension of C, which is �nite. Also, T |C is injective and

has closed image by Proposition 4.39. But T (X) = T (C) + T (kerS), so
by Proposition 4.43, the image of T is closed. We proceed to show that

S(C) ⊆ T (C). Assume the contrary. Then, by Lemma 4.45 there exists

y ∈ S(C)\T (C) with ‖y‖ = 1 such that ‖y−z‖ ≥ 1/2 for all z ∈ T (C)∩S(C).
Let x := (S|C)−1(y). Then, ‖x‖ ≤ 1/c and we have ‖S(x) − T (x)‖ ≥ 1/2.
But,

1/2 > ‖S − T‖1
c
≥ ‖S − T‖‖x‖ ≥ ‖S(x)− T (x)‖,

yielding a contradiction and proving that S(C) ⊆ T (C). This implies in

particular, that T (X) has �nite codimension and completes the proof that

T is Fredholm.

Note that the same argument as above also yields T (C) ⊆ S(C) and

hence T (C) = S(C). Since kerT ∩C = {0}, there exists a subspace N ⊆ X
such that X = C ⊕ N ⊕ kerT as tvs. (Note that N is �nite-dimensional

because dimN = dim(kerS)−dim(kerT ) and hence closed.) Then, T (X) =
T (C +N). But T is injective on C ⊕N . So,

dim(Y/T (X)) = dim(Y/T (C +N)) = dim(Y/T (C))− dimT (N)

= dim(Y/S(C))− dimN = dim(Y/S(X))− dim(kerS) + dim(kerT ).

In particular, this implies indT = indS.

Corollary 4.47. Let X be a Banach space and T ∈ KL(X,X). Then,

S := 1− T ∈ FL(X,X). Moreover, indS = 0.

Proof. Exercise.Hint: For the second assertion consider the family of oper-

ators St := 1− tT for t ∈ [0, 1] and use the continuity of ind.



14 Robert Oeckl � FA NOTES 4 � 19/05/2010

Proposition 4.48 (Fredholm alternative). Let X be a Banach spaces, T ∈
KL(X,X) and λ ∈ K \ {0}. Then, either the equation

λx− Tx = y

has one unique solution x ∈ X for each y ∈ X, or it has no solution for

some y ∈ X and in�nitely many solutions for all other y ∈ X.

Proof. Exercise.

4.7 Eigenvalues and Eigenvectors

De�nition 4.49. Let X be a tvs and A ∈ CL(X,X). Then, λ ∈ K is called

an eigenvalue of A i� there exists x ∈ X \ {0} such that λx−Ax = 0. Then
x is called an eigenvector for the eigenvalue λ. Moreover, the vector space

of eigenvectors for the eigenvalue λ is called the eigenspace of λ.

Proposition 4.50. Let X be a Banach space and T ∈ KL(X,X). Then,

λ ∈ K \ {0} is an eigenvalue of T i� λ1 − T does not have a continuous

inverse.

Proof. Exercise.

Lemma 4.51. Let X be a Banach space, T ∈ KL(X,X) and c > 0. Then,

the set of eigenvalues λ such that |λ| > c is �nite.

Proof. Suppose the assertion is not true. Thus, there exists a sequence

{λn}n∈N of distinct eigenvalues of T such that |λn| > c for all n ∈ N. Let

{vn}n∈N be a sequence of associated eigenvectors. Observe that the set of

these eigenvectors is linearly independent. For all n ∈ N let An be the vec-

tor space spanned by {v1, . . . , vn}. Thus {An}n∈N is a strictly ascending

sequence of �nite-dimensional subspaces of X. Set y1 := v1/‖v1‖. Using

Lemma 4.45 we choose for each n ∈ N a vector yn+1 ∈ An+1 such that

‖yn+1‖ = 1 and ‖yn+1− y‖ > 1/2 for all y ∈ An. Now let n > m ≥ 1. Then,

‖Tyn − Tym‖ = ‖λnyn − (λnyn − Tyn + Tym)‖

= |λn|‖yn − |λn|−1(λnyn − Tyn + Tym)‖ > |λn|
1

2
>

1

2
c.

We have used here that λnyn − Tyn ∈ An−1 and that Tym ∈ Am ⊆ An−1.

This shows that the image of the bounded set {yn}n∈N under T is not totally

bounded. But this contradicts the compactness of T .
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De�nition 4.52. Let X be a Banach space and A ∈ CL(X,X). Then, the
set σ(A) := {λ ∈ K : λ1 − A is not continuously invertible} is called the

spectrum of A.

Theorem 4.53. Let X be a Banach space and T ∈ KL(X,X).

1. If X is in�nite-dimensional, then 0 ∈ σ(T ).

2. The set σ(T ) is bounded.

3. The set σ(T ) is countable.

4. σ(T ) has at most one accumulation point, 0.

Proof. Exercise.


