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4 Algebras, Operators and Dual Spaces

4.1 The Stone-Weierstrafi Theorem

Definition 4.1. A vector space X over the field K is called an algebra over
K iff it is equipped with an associative bilinear map - : X x X — X. This
map is called multiplication.

Definition 4.2. Let X be an algebra over K equipped with a topology. Then
X is called a topological algebra iff vector addition, scalar multiplication and
algebra multiplication are continuous.

Proposition 4.3. Let S be a topological space. Then, C(S,K) with the
topology of compact convergence is a topological algebra.

Proof. Exercise. O
Lemma 4.4. Let ¢ > 0. The absolute value function | -| : R — R given

by x — |z| can be approzimated uniformly on [—c,c| by polynomials with
vanishing constant term.

Proof. Exercise. O

Lemma 4.5. Let ¢ > 0 and € > 0. Then, there exist polynomials Ppy, and

Ppyaz of n variables and without constant term such that for all a1,...,a, €
[—c ],

| Prin(ai, ... a,) —min{ay, ..., an}| < e,

| Praz(al, ..., an) — max{as,...,an}| <e.
Furthermore, Ppin(a,...,a) =a and Ppg(a,...,a) = a.

Proof. Tt suffices to show the statement for n = 2. Since the minimum
and maximum functions can be evaluated iteratively, the general statement
follows then by iteration and a multi-e argument. We notice that

ap +az  |ag — ag]

max{a,az} =

2 2
. ay+az |ag —ag
min{a;, az} = g | 5 ’

By Lemma 4.4 there exists a polynomial P without constant terms such that
|P(z) — |z|| < 2€ for all x € [-2¢,2¢]. It is easily verified that

a1 + as P(a; — as
Pmax(a1>a2) = 9 + ( 9 )7
a1+ a P(a1 —a
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have the desired properties. O

Definition 4.6. Let S be a set and A C F(S,K). We say that A separates
points iff for each pair x,y € S such that x # y there exists f € A such that
f(x) # f(y). We say that A vanishes nowhere iff for each = € S there exists
f € A such that f(z) #0.

Lemma 4.7. Let S be a topological space and A C C(S,K) a subalgebra.
Suppose that A separates points and vanishes nowhere. Then, for any pair
x,y € S with x # y and any pair a,b € K there exists a function f € A such

that f(z) =a and f(y) =b.

Proof. Exercise. O

Theorem 4.8 (real Stone-Weierstral). Let K be a compact Hausdorff space
and A C C(K,R) a subalgebra. Suppose that A separates points and vanishes
nowhere. Then, A is dense in C(K,R) with respect to the topology of uniform
convergence.

Proof. Given f € C(K,R), and € > 0 we have to show that there is k € A
such that k& € B(f), i.e.,

flz)—e<k(z)< f(x)+e VreK.

Fix x € K. For each y € K we choose a function g, € A such that
f(x) = gay(x) and f(y) = gzy(y). This is possible by Lemma 4.7. By
continuity there exists an open neighborhood U, for each y € K such that
9zy(2) < f(2) +€/4 for all z € U,. Since K is compact there are finitely
many points ¥y1,...,yn € K such that the associated open neighborhoods
Uy,s..., Uy, cover K. Let

gz ‘= min{gx,ylv e 79x,yn}-

Since K is compact there exists ¢ > 0 such that |gy,(2)] < ¢ for all z € K
and all i € {1,...,n}. Then, by Lemma 4.5 there exists a polynomial Py,
such that hy := Pmin(Jayrs---» 9oy.) € A satisfies |hy(2) — g2(2)| < €/4 for
all z € K and hy(x) = gz(x). Thus, hy(z) = f(z) and hy(2) < f(2) +€/2
for all z € K.

Choose now for each x € K a function h, € A as above. Then, by
continuity, for each x € K there exists an open neighborhood U, such that
f(z) —€/2 < hy(z) for all z € U,. By compactness of K there exists a



Robert Oeckl - FA NOTES 4 - 19/05/2010 3

finite set of points x1,...,x, € K such that the associated neighborhoods
Ug,y..., Uy, cover K. Let

h:=max{hyz,,..., hy, }.

Since K is compact there exists ¢ > 0 such that |hg,(2)| < c for all z € K
and all 7 € {1,...,m}. By Lemma 4.5 there exists a polynomial P,y such
that k := Ppax(hay,- -, ha,,) € A satisfies |k(z) — h(2)| < €/2 for all z € K.
Then, f(z)—e€ < k(z) < f(z)+e€forall z € K. This completes the proof. [

Theorem 4.9 (complex Stone-Weierstraft). Let K be a compact Hausdorff
space and A C C(K,C) a subalgebra. Suppose that A separates points, van-
ishes nowhere and is invariant under complex conjugation. Then, A is dense
in C(K,C) with respect to the topology of uniform convergence.

Proof. Let Ar be the real subalgebra of A given by the functions with values
in R. Note that if f € A, then Rf € Ag since Rf = (f + f)/2. Likewise
if f € A, then Sf € Ag since Sf = —R(if). It is then clear that A
separates points and vanishes nowhere. Applying the real version of the
Stone-Weierstrafy Theorem 4.8 we find that Ag is dense in C(K,R). But
then A = Ag +1Ag is dense in C(K,C) = C(K,R) +1 C(K,R). O

Theorem 4.10. Let S be a Hausdorff space and A C C(S,K) a subalgebra.
Suppose that A separates points, vanishes nowhere and is invariant under
complez conjugation if K = C. Then, A is dense in C(S,K) with respect to
the topology of compact convergence.

Proof. Recall that the sets of the form
Uke:={f € C(SK):|f(z) <eVxe K},

where K C S is compact and ¢ > 0 form a basis of neighborhoods of 0 in
C(S,K). Given f € C(S,K), K C S compact and € > 0 we have to show that
there is g € A such that g € f + Uk . Let Ax be the image of A under the
projection p : C(S,K) — C(K,K). Then, Ak is an algebra that separates
points, vanishes nowhere and is invariant under complex conjugation if K =
C. By the ordinary Stone-Weierstralt Theorem 4.8 or 4.9, Ak is dense in
C(K,K) with respect to the topology of uniform convergence. Hence, there
exists ¢ € A such that p(g) € Be(p(f)). But this is equivalent to g €
[+ Uke. L]
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Theorem 4.11. Let S be a locally compact Hausdorff space and A C Cy(S,K)
a subalgebra. Suppose that A separates points, vanishes nowhere and is in-
variant under complex conjugation if K = C. Then, A is dense in Cy(S,K)
with respect to the topology of uniform convergence.

Proof. Exercise.Hint: Let S = S U {oco} be the one-point compactification
of S.  Show that Co(S,K) can be identified with the closed subalgebra
Cloo=0(S,K) € C(S,K) of those continuous functions on S that vanish at

0. Denote by A the corresponding extension of A to S. Now modify Theo-
rem 4.8 in such a way that A is assumed to vanish nowhere except at co to
show that A is dense in Cjoo—o(S5,K). O

4.2 Operators

Definition 4.12. Let X, Y be tvs. We denote the vector space of compact
linear maps X — Y by KL(X,Y).

Proposition 4.13. Let X, Y, Z be tvs. Let f € CL(X,Y) and g €
CL(Y,Z). If f or g is bounded, then g o f is bounded. If f or g is com-
pact, then g o f is compact.

Proof. Exercise. O

Definition 4.14. Let X,Y be normed vector spaces. Then, the operator
norm on CL(X,Y) is given by

11 = sup {|If ()| - = € Ba(0) € X}

Proposition 4.15. Let X be a normed vector space and 'Y a Banach space.
Then, CL(X,Y) with the operator norm is a Banach space.

Proof. Let {fn}nen be a Cauchy sequence in CL(X,Y’). This means,
Ve>0:3IN>0:Yn,m >N : || fn— ful <e
But by the definition of the operator norm this is equivalent to
Ve>0:3IN>0:Vn,m> N :Vee X :|fu(z)— fm@)] <e€z|]. (1)

Since Y is complete, so each of the Cauchy sequences { f,,(z)}nen converges
to a vector f(x) € Y. This defines a map f: X — Y. f is linear since we
have for all z,y € X and A\, p € K,

fQz + py) = lm fo(Az + py) = Hm (Afo(2) + 1fa(y))
= A lim fo(z) +p lim fo(y) = Af(2) + 1f(y)-
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Equation (1) implies now
Ve>0:3IN >0:Vn> N :Vee X :|fulz)— flx)] <€z
This implies that f is continuous and is equivalent to
Ve>0:IN>0:Yn> N :||fn, — fll <e
That is, { fn}nen converges to f. O

Exercise 23. Let X, Y be tvs. Let & be the set of bounded subsets of X.
(a) Show that CL(X,Y) is a tvs with the G-topology. (b) Suppose further
that X is locally bounded and Y is complete. Show that then CL(X,Y) is
complete. (c¢) Show that if X and Y are normed vector spaces the G-topology
coincides with the operator norm topology.

Example 4.16. Let X be a tvs. Then, CL(X,X) is an algebra over K
and Proposition 4.13 implies that the subsets BL(X, X) and KL(X, X) of
CL(X, X) are bi-ideals.

Exercise 24. Let X be a normed vector space. Show that CL(X, X) with
the operator norm and multiplication given by composition is a topological
algebra. Moreover, show that ||A o B|| < ||Al|||B]|| for all A, B € CL(X, X).

4.3 Dual spaces

Definition 4.17. Let X be a tvs over K. Then, the space L(X,K) of linear
maps X — K is called the algebraic dual of X and denoted by X*. The
space CL(X, K) of continuous linear maps X — K is called the (topological)
dual of X and denoted by X*.

Definition 4.18. Let X be a tvs. Then, the weak™ topology on X* is the
coarsest topology on X* such that the evaluation maps z : X* — K given
by Z(f) := f(x) are continuous for all z € X.

Exercise 25. Let X be a tvs. Show that the weak® topology on X* makes it
into a locally convex tvs and indeed coincides with the topology of pointwise
convergence under the inclusion CL(X,K) C C(X,K). Moreover, show that
CL(X,K) is closed in C(X,K).

Proposition 4.19. Let X be a tvs, F C CL(X,K) equicontinuous. Then,
F' is bounded in the weak™ topology.

Proof. Exercise. O
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Proposition 4.20. Let X be a normed vector space. Then, the operator
norm topology on X* is finer than the weak™ topology.

Proof. Exercise. O

Indeed, we shall see that the following Banach-Alaoglu Theorem has as
a striking consequence a considerable strengthening of the above statement.

Theorem 4.21 (Banach-Alaoglu). Let X be a tvs, U a neighborhood of 0
m X and V' a bounded and closed set in K. Then, the set

MUV):={fe X*: f(U) CV}.
is compact with respect to the weak™ topology.

Proof. We first show that M (U, V) is closed. To this end observe that

MU, V)= () M({z},V) where M({z},V):={feX": f(z) €V}
zeU

Each set M({z},V) is closed since it is the preimage of the closed set V'
under the continuous evaluation map & : X* — K. Thus, M (U, V), being
an intersection of closed sets is closed.

Next we show that M (U, V) is equicontinuous and bounded. Let W be
a neighborhood of 0 in K. Since V is bounded there exists A > 0 such that
V C AW, ie, A1V C W. But by linearity M(U,V) = M(A\~1U,A"1V).
This means that f(A™'U) C A~V C W for all f € M(U,V), showing
equicontinuity. By Proposition 4.19 it is also bounded.

Thus, the assumptions of the Arzela-Ascoli Theorem 3.35 are satisfied
and we obtain that M (U, V') is relatively compact with respect to the topol-
ogy of compact convergence. But since M (U, V) is closed in the topology
of pointwise convergence it is also closed in the topology of compact conver-
gence which is finer. Hence, M (U, V') is compact in the topology of compact
convergence. But since the topology of pointwise convergence is coarser,
M (U, V) must also be compact in this topology. O

Corollary 4.22. Let X be a normed vector space and B C X* the closed
unit ball with respect to the operator norm. Then B is compact in the weak®
topology.

Proof. Exercise. O

Remark 4.23. Let X be a normed space. Then, X* with the operator norm
topology is complete, i.e., a Banach space (due to Proposition 4.15).
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Given a normed vector space X, we shall in the following always equip
X* with the operator norm if not mentioned otherwise.

Definition 4.24. Let X be a normed vector space. The bidual space of X,
denoted by X** is the dual space of the dual space X*. Let x € X.

Proposition 4.25. Let X be a normed vector space. Given x € X the
evaluation map & : X* — K given by &(y) := y(z) for all y € X* is an
element of X**. Moreover, the canonical linear map ix : X — X™ given by
T — T 18 isometric.

Proof. The continuity of & follows from Proposition 4.20. Thus, it is an
element of X**. We proceed to show that ix is isometric. Denote by Bx«
the closed unit ball in X*. Then, for all x € X,

12| = sup [2(f)]= sup |f(z)| < sup [[fl[l=] =[]
feBxx* feBxx* feBxx

On the other hand, given x € X choose with the help of the Hahn-Banach
Theorem (Corollary 3.38) g € X* such that g(z) = ||z|| and ||g|| = 1. Then,

2] = sup |2(f)| > [2(g)| = |g(z)| = ||z
fe€Bxx

O

Definition 4.26. A Banach space X is called reflerive iff the canonical
linear map ix : X — X ™ is surjective.
4.4 Adjoint operators

Definition 4.27. Let X, Y be tvs and f € CL(X,Y). The adjoint operator
f* e L(Y*, X*) is defined by

(F(9)(x) == g(f(x)) VeeX,geY"

Remark 4.28. It is immediately verified that the image of f* is indeed
contained in X™* and not merely in X*.

Proposition 4.29. Let X, Y be tvs and f € CL(X,Y). Then, f* €
CL(Y™*, X*) if we equip X* and Y™ with the weak™ topology.

Proof. Exercise. O
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Proposition 4.30. Let X, Y be normed vector spaces and f € CL(X,Y).
Then, f* € CL(Y™*, X*) if we equip X* and Y* with the operator norm topol-
ogy. Moreover, equipping also CL(X,Y) and CL(Y™, X*) with the operator
norm we get ||f*|| = ||f]| for all f € CL(X,Y). That is, * : CL(X,Y) —
CL(Y™, X*) is a linear isometry.

Proof. Exercise.Hint: Use the Hahn-Banach Theorem in the form of Corol-
lary 3.38 to show that || f*|| > || f]|- O

Lemma 4.31. Let X, Y be normed vector spaces and f € CL(X,Y). Then,
f**OiX :iyof.

Proof. Exercise. O

Proposition 4.32. Let X, Y be normed vector spaces and f € CL(X,Y).
Equip X* and Y* with the operator norm topology. Then, f* is compact iff
f is compact.

Proof. Suppose first that f is compact. Then, C' := f(B1(0)) is compact.
Let By+ be the open unit ball in Y*. Then, By+ is equicontinuous and
the restriction of By+ to C' C Y is bounded in C(C,K) (with the topology
of pointwise convergence). Thus, by the Arzela-Ascoli Theorem 3.35, By
restricted to C' is totally bounded in C(C,K) (with the topology of uniform
convergence). In particular, for any € > 0 there exists a finite set F' C By«
such that for any g € By~ there is g € F with |g(y) — g(y)| < e for all y € C.
But then also |f*(g)(x) — f*(§)(z)| < € for all x € B;(0) C X. This in turn
implies ||f*(g) — f*(9)|| < e. That is, f*(By+) is totally bounded and hence
relatively compact. Hence, f* is compact.

Conversely, suppose that f* is compact. Then, by the same argument as
above f**: X* — Y** is compact. That is, there is a neighborhood U** of
0 in X** such that f**(U) is compact in Y**. Since iy is continuous U :=
i 1(U**) is a neighborhood of 0 in X. Using Lemma 4.31 we get f**(U**) =
foix(U) = iy o f(U). But since iy is isometric, the compactness of
iy o f(U) implies the compactness of f(U). Hence, f is compact. O

Proposition 4.33. Let X, Y be Hausdorff tvs, A € CL(X,Y). Then, there
are canonical isomorphisms of vector spaces,

1. (Y/m)* s ker(A%),

2. Y*/ker(A*) — (m)
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Moreover, if we equip dual space with the weak® topology, these isomorphisms
become isomorphisms of tvs. Similarly, If X and Y are normed vector spaces
and we equip dual spaces with the operator norm, the isomorphisms become
1sometries.

Proof. Let ¢ : Y — Y/A(X) be the quotient map. The adjoint of ¢ is
*

q° (Y/A(X)) — Y™, Since ¢ is surjective, ¢* is injective. We claim
that the image of ¢* is ker(A*) C Y™ proving 1. Let f € (Y/A(X)) .
Then, A*(¢*(f)) = fogo A = 0 since already ¢ o A = 0. Now suppose

f € ker(A*) CY*. Then, foA=0,ie., flax)=0. Since f is continuous,
we must actually have f |m = 0. But this means there is a well defined

g:Y/A(X) — K such that f = qog. Moreover, the continuity of f implies
continuity of ¢ by the definition of the quotient topology on Y/A(X). This
completes the proof of 1.

Consider the inclusion i : A(X) — Y. The adjoint of i is i* : Y* —

*
(A(X)) . Since 1 is injective, i* is surjective. We claim that the kernel of i*

is precisely ker(A*) so that quotienting it leads the isomorphism 2. Indeed,
let feY* fe€ker(A*)iff 0 = A*(f) = fo A. But this is equivalent to
flacx) = 0. Since f is continuous this is in turn equivalent to f\m = 0.
But this is in turn equivalent to 0 = foi = i*(f), completing the proof of 2.

Exercise.Complete the topological part of the proof. O

4.5 Approximating Compact Operators

Definition 4.34. Let X,Y be tvs. We denote the space of continuous linear
maps X — Y with finite dimensional image by CLgn(X,Y).

Proposition 4.35. Let X, Y be tvs such thatY is Hausdorff. Then, CLgn(X,Y) C
KL(X,Y).

Proof. Exercise. O
-

Proposition 4.36. Let X,Y be normed vector spaces. Then, CLg,(X,Y)
KL(X,Y) with respect to the operator norm topology.

Proof. Let f € CLgp(X,Y) and € > 0. Then, there exists g € CLgp(X,Y)
such that || f — g|| < e. In particular, (f — g)(B1(0)) € B(0). This implies
f(B1(0)) € g(B1(0)) + B(0). But g(B1(0)) is a bounded subset of the finite
dimensional subspace ¢g(X) and hence totally bounded. Thus, there exists
a finite subset F' C g(B1(0)) such that g(B1(0)) C F + B.(0). But then,
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f(B1(0)) € F+ Bc(0) 4+ B(0) C F + Ba.(0). That is, f(B1(0)) is covered by
a finite number of balls of radius 2¢. Since € was arbitrary this means that
f(B1(0)) is totally bounded and hence relatively compact. O

Proposition 4.37. Let X,Y be normed vector spaces. Suppose there ex-
ists a bounded sequence {sy}nen of operators s, € CLgy,(Y,Y) such that
lim, oo $n(y) = y for all y € Y. Then, KL(X,Y) C CLg(X,Y) with
respect to the operator norm topology.

Proof. Exercise.Hint: For f € KL(X,Y) and € > 0 show that there exists
n € N such that [[s, o f — f]| <e. O

4.6 Fredholm Operators

Proposition 4.38. Let X be a Hausdorff tvs and T € KL(X, X). Then, the
kernel of S :==1—T € CL(X, X) is finite-dimensional.

Proof. Note that T" acts as the identity on the subspace ker S. Denote this
induced operator by T : ker S — ker S. Since T is compact so is T. Thus,
there exists a neighborhood of 0 in ker S that is compact. In particular, ker S
is locally compact. By Theorem 3.18, ker S' is finite dimensional. O

Proposition 4.39. Let X, Y be Banach spaces and f € CL(X,Y) injective.
Then, f(X) is closed iff there exists ¢ > 0 such that ||f(x)| > c||x|| for all
z e X.

Proof. Suppose first that f(X) is closed. Then, f(X) is complete since YV
is complete. Thus, by Corollary 3.66, f is open as a map X — f(X). In
particular, f(B1(0)) is an open neighborhood of 0 in f(X). Thus, there
exists ¢ > 0 such that B.(0) C f(B1(0)) C f(X). By injectivity of f this
implies that ||f(x)|| > ¢ for all x € X with [|z|| > 1. This implies in turn
|| f(x)]| > c||z] for all x € X.

Conversely, assume that there is ¢ > 0 such that ||f(z)] > c[/z| for
all z € X. Let y € f(X). Then there exists a sequence {zy}ney in X
such that {f(zn)}nen converges to y. In particular, { f(zn) }nen is a Cauchy
sequence. But as is easy to see the assumption then implies that {x,}nen
is also a Cauchy sequence. Since X is complete this sequence converges, say
to x € X. But since f is continuous we must have

v =i, fen) = F (Jim o) = 5@)

In particular, y € f(X), i.e., f(X) is closed. O
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Proposition 4.40. Let X be a Banach space and T € KL(X, X). Then,
the image of S :=1—T € CL(X, X) is closed and has finite codimension,
i.e., X/S(X) is finite dimensional.

Proof. We first show that S(X) is a closed subspace of X. Since S is contin-
uous ker S is a closed subspace of X. The quotient map ¢ : X — X/ ker(5) is
thus a continuous and open linear map between Banach spaces. S factorizes
through ¢ via S = S o ¢, where S : X/ ker(S) — X is linear, continuous and
injective. We equip X/ ker(S) with the quotient norm. By Theorem 3.64
this space is a Banach space. By Proposition 4.39 the image of S (and thus
that of S) is closed iff there exists a constant ¢ > 0 such that [|S(y)|| > ¢||y||
for all y € S/ker(S). Hence, we have to demonstrate the existence of such
a constant. Suppose it does not exist. Then, there is a sequence {yn }nen
of elements of X/ ker(S) with ||y,|| = 1 and such that lim, . S(y,) = 0.
Now choose a preimages x,, of the y, in X with 1 < ||z,|| < 2. Then,
{Zn}nen is bounded so that {T(z,)}nen is compact. In particular, there
is a subsequence {xj}ren so that {T'(xg)}ren converges, say to z € X.
Since on the other hand limg_,, S(zx) = 0 we find with S+ T = 1 that
limg 00 = 2. So by continuity of S we get S(z) = 0, i.e., z € ker(5)
and hence z € kerq. By continuity of ¢ this implies, limy_, ||q¢(x¢)|| = O,
contradicting ||¢(zg)|| = |lyk]| = 1 for all k£ € N. This completes the proof of
the existence of ¢ and hence of the closedness of the image of S.

The compactness of T' implies the compactness of T* by Proposition 4.32.
Thus, by Proposition 4.38, §* = 1* — T has finite dimensional kernel. But
Proposition 4.33.1 implies then that the codimension of S(X) in X, i.e.,
the dimension of X/S(X) is also finite. Since we have seen above that
S(X) = S(X), this completes the proof. O

Definition 4.41. Let X, Y be normed vector spaces and A € CL(X,Y). A
is called a Fredholm operator iff the kernel of A is finite dimensional and its
image is closed and of finite codimension. Then, we define the index of a A
to be

ind A = dim(ker A) — dim(Y/A(Y)).

We denote by FL(X,Y) the set of Fredholm operators.

Proposition 4.42. Let X be a Hausdorff tvs. Then, any finite dimensional
subspace of X is closed.

Proof. Let A C X be a subspace of dimension n. Then, A as a tvs is
isomorphic to K. In particular, A is complete and thus closed in X by
Proposition 3.15. O
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Proposition 4.43. Let X be a Hausdorff tvs, C' a closed subspace of X and
F a finite-dimensional subspace of X. Then, F'+ C is closed in X.

Proof. Since C'is closed X/C is a Hausdorff tvs. Let p : X — X/C be the
continuous projection. Then, p(F) is finite-dimensional, hence complete and
closed in X/C. Thus, F + C = p~(p(F)) is closed. O

Proposition 4.44. Let X be a locally convex Hausdorff tvs. Then, any finite
dimensional subspace of X admits a closed complement.

Proof. We proceed by induction in dimension. Let A C X be a subspace of
dimension 1 and v € A\ {0}. Define the linear map A : A — K by A(v) = 1.
Then, the Hahn-Banach Theorem in the form of Theorem 3.39 ensures that
A extends to a continuous map A : X — K. Then, clearly ker A is a closed
complement of A in X. Now suppose we have shown that for any subspace
of dimension n a closed complement exists in X. Let IV be a subspace of
X of dimension n + 1. Choose an n-dimensional subspace M C N. This
has a closed complement C by assumption. Moreover, C' is a locally convex
Hausdorff tvs in its own right. Let A = NNC. Then, A is a one-dimensional
subspace of C' and we can apply the initial part of the proof to conclude that
it has a closed complement D in C. But D is closed also in X since C is
closed in X and it is a complement of N. O

Lemma 4.45 (Riesz). Let X be a normed vector space and C a closed
subspace. Then, for any 1 > € > 0 there exists x € X \ C with ||z|| =1 such
that for all y € C,

lz =yl =1 —e

Proof. Choose zg € X \ C arbitrary. Now choose yp € C such that

1
lzo = woll < llzo —yll—
—€

for all y € C. We claim that

_ L0~ Yo
lzo — yoll

has the desired property. Indeed, for all y € C,

_ llzo = yo = (llzo = wolDyll < llzo = yol(1 =€)
e —yll = = :
lz0 = woll 20 = woll
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Proposition 4.46. Let X, Y be Banach spaces. Then, FL(X,Y) is open in
CL(X,Y). Moreover, ind : FL(X,Y) — Z is continuous.

Proof. Let S: X — Y be Fredholm. Since ker S is finite dimensional, there
exists a closed complement C' C X by Proposition 4.44. Then, S|¢: C =Y
is injective and has closed image S(C) = S(X). Thus, by Proposition 4.39
there exists ¢ > 0 such that ||S(x)|| > ¢||z|| for all z € C. Now consider T €
B./3(S) € CL(X,Y). We claim that T' is Fredholm and that ind 7" = ind S,
thus proving the assertions. Indeed, for all x € C' we have

IT(@) | = [1S@)| = 1S(x) = T(@)l| = cllzl| = 15 = Tzl = /2=

Thus, ker 7'N C = {0} and so the dimension of ker 7" must be smaller or
equal to the codimension of C, which is finite. Also, T'|¢ is injective and
has closed image by Proposition 4.39. But T(X) = T(C) + T'(ker 5), so
by Proposition 4.43, the image of T is closed. We proceed to show that
S(C) C T(C). Assume the contrary. Then, by Lemma 4.45 there exists
y € S(C)\T(C) with ||ly|| = 1such that |[y—z|| > 1/2 for all z € T(C)NS(C).
Let = := (S|¢)"(y). Then, ||z|| < 1/c and we have ||S(z) — T'(z)| > 1/2.
But,

1
12> |8 =TI~ 2 IS = Tllz]l = [I5(z) = T(2)ll,

yielding a contradiction and proving that S(C) C T(C). This implies in
particular, that 7'(X) has finite codimension and completes the proof that
T is Fredholm.

Note that the same argument as above also yields 7'(C') € S(C) and
hence T'(C) = S(C). Since kerT'N C = {0}, there exists a subspace N C X
such that X = C & N @ kerT as tvs. (Note that N is finite-dimensional
because dim N = dim(ker S) — dim(ker ') and hence closed.) Then, T'(X) =
T(C + N). But T is injective on C' & N. So,

dim(Y/T(X)) = dim(Y/T(C 4+ N)) = dim(Y/T(C)) — dim T(N)
=dim(Y/S(C)) — dim N = dim(Y/S(X)) — dim(ker S) + dim(ker T').
In particular, this implies ind 7" = ind S. O

Corollary 4.47. Let X be a Banach space and T € KL(X,X). Then,
S:=1-TeFL(X, X). Moreover, ind S = 0.

Proof. Exercise.Hint: For the second assertion consider the family of oper-
ators Sy := 1 —tT for t € [0,1] and use the continuity of ind. O
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Proposition 4.48 (Fredholm alternative). Let X be a Banach spaces, T €
KL(X, X) and A € K\ {0}. Then, either the equation

Ax—Tzr=y

has one unique solution x € X for each y € X, or it has no solution for
some y € X and infinitely many solutions for all other y € X.

Proof. Exercise. O

4.7 Eigenvalues and Eigenvectors

Definition 4.49. Let X be a tvs and A € CL(X, X). Then, A € K is called
an eigenvalue of A iff there exists x € X \ {0} such that A\x — Az = 0. Then
x is called an eigenvector for the eigenvalue A. Moreover, the vector space
of eigenvectors for the eigenvalue A is called the eigenspace of A.

Proposition 4.50. Let X be a Banach space and T € KL(X,X). Then,
A € K\ {0} is an eigenvalue of T iff \1 — T does not have a continuous
mnverse.

Proof. Exercise. O

Lemma 4.51. Let X be a Banach space, T € KL(X,X) and ¢ > 0. Then,
the set of eigenvalues A such that |\| > ¢ is finite.

Proof. Suppose the assertion is not true. Thus, there exists a sequence
{A\n}nen of distinct eigenvalues of T such that |A,| > ¢ for all n € N. Let
{vn}nen be a sequence of associated eigenvectors. Observe that the set of
these eigenvectors is linearly independent. For all n € N let A,, be the vec-
tor space spanned by {vi,...,v,}. Thus {A,}nen is a strictly ascending
sequence of finite-dimensional subspaces of X. Set y; := vi/||v1]]. Using
Lemma 4.45 we choose for each n € N a vector y,+1 € An11 such that
lynt1ll = 1 and [|yp1 —yl| > 1/2 for all y € A,,. Now let n > m > 1. Then,

HTyn - Tym” = ||)\nyn - ()\nyn — Typ + Tym)”

_ 1 1
= [Anlllyn — |An] 1()‘n?/n = Tyn + Tym)|| > |/\n‘§ > 50‘
We have used here that \,y, — Ty, € A,—1 and that Ty, € Ay, C Ap_1.
This shows that the image of the bounded set {y,, }neny under 7' is not totally
bounded. But this contradicts the compactness of T. O
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Definition 4.52. Let X be a Banach space and A € CL(X, X). Then, the

set 0(A) := {A € K: A1 — A is not continuously invertible} is called the
spectrum of A.

Theorem 4.53. Let X be a Banach space and T € KL(X, X).
1. If X is infinite-dimensional, then 0 € o(T).
2. The set o(T) is bounded.
3. The set o(T) is countable.
4. o(T) has at most one accumulation point, 0.

Proof. Exercise. O



